RAPPORT
FÖRDJUPAD RISKANALYS FÖR
LUTHAGEN 27:12

2019-01-30
UPPDRAG 290603, Fördjupad riskanalys för Luthagen 27:12
Titel på rapport: Fördjupad riskanalys för Luthagen 27:12
Datum: 2019-01-30

MEDVERKANDE
Beställare: Genova Bostad Projektutveckling AB
Kontaktperson: Anna Molén
Konsult: Niklas Smedberg, Frida Hammar, Lena Tilly
Uppdragsansvarig: Erol Uddholm
Kvalitetsgranskare: Lena Tilly
SAMMANFATTNING

Riskerna analyseras med avseende på både grundvattnets kvalitet och kvantitet och har värderats utifrån sannolikhet och konsekvens för negativ påverkan. I Tabell 1 redovisas vilka risker som bör hanteras vidare tillsammans med förslag på åtgärder i syfte att reducera påverkan från dessa.

Överlag är de identifierade riskerna relaterade till genomförandet av planförslaget begränsade och åtgärderna för att hantera dessa är förhållandevis enkla att genomföra. Utredningen visar att vid planering och implementering av riskreducerande åtgärder (Tabell 1) reduceras risksituationen till acceptabla nivåer för planområdet.

Tabell 1. Sammanställning över risker som bör hanteras vidare och förslag på åtgärder.

<table>
<thead>
<tr>
<th>Aktivitet</th>
<th>Underaktivitet</th>
<th>Sannolikhet</th>
<th>Konsekvens</th>
<th>Riskprodukt</th>
<th>Åtgärdsförslag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pålning</td>
<td>Spridning av potentiella befintliga föroreningar</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>En miljöteknisk markundersökning bör utföras för att undersöka föroringssituationen inom planområdet. Se förklaring i avsnitt 6.</td>
</tr>
<tr>
<td></td>
<td>Möjlig transportväg för föroreningar kopplade till olyckor</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>Rutiner för hantering av olyckor eller spill samt utformning av uppställningsplats bör utarbetas. Se förklaring i avsnitt 6.</td>
</tr>
<tr>
<td></td>
<td>Möjlig transportväg för föroreningar kopplade till spill av arbetsfordon</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Schaktarbete</td>
<td>Bortledning av grundvatten som leder till spridning av klorerade lösningsmedel</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>En platspecific utredning bör göras av de geotekniska förhållanden. Om denna utredning visar att grundvattnets trycknivå är ovan schaktbotten bör även en hydrogeologisk undersökning göras inom planområdet. Se förklaring i avsnitt 6.</td>
</tr>
<tr>
<td></td>
<td>Bortledning av grundvatten som leder till spridning av föroreningar vid en textilindustri</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Möjlig transportväg för föroreningar kopplade till olyckor</td>
<td>Möjlig transportväg för föroreningar kopplade till spill av arbetsfordon</td>
<td>Rivning Risk för spridning av föroreningar</td>
<td>Uppställning av arbetsfordon Risk för spridning av föroreningar</td>
<td>Brandbekämpning</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Risk för spridning av föroreningar</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
5.3.5 POTENTIELLT FÖRORENADE MARKOMRÅDEN .. 22
5.3.6 ÖVERSVÄMNING .. 22
5.3.7 SAMMANSTÄLLNING AV RISKER TILL FÖLJD AV ÖVRIGA RISKKÄLLOR 23

6 RISKREDUCERANDE ÅTGÄRDER .. 24

6.1 RISKER UNDER BYGGSKEDET .. 24
 6.1.1 PÅLNING ... 24
 6.1.2 SCHAKTARBETEN ... 24
 6.1.3 UPPSTÄLLNING AV ARBETSFORDON .. 24
 6.1.4 RIVNING .. 24

6.2 RISKER UNDER DRIFTSKEDET ... 24
 6.2.1 BRANDBEKÄMPNING .. 24

6.3 ÖVRIGA RISKKÄLLOR .. 25

7 SLUTSATS ... 26

8 REFERENSER .. 28
1 INLEDNING

1.1 UPPDRAGSBESKRIVNING

För att Uppsalaasen ska kunna fortsätta att förse ett växande Uppsala med dricksvatten även i framtiden har Uppsala kommun tagit fram en utredning (Geosigma AB, 2018) som bland annat syftat till att ta fram riktlinjer för stadsutvecklingen på äsen och i dess närhet. I riktlinjerna ingår att utreda riskerna i samband med ny exploatering inom områden som kan påverka Uppsala- och Vattholmaasarna och att utarbeta förslag på åtgärder som reducerar riskerna.

Figur 1. Planområdet ligger i Luthagen i västra delen av Uppsala tätort (©Lantmäteriet).
1.2 SYFTE
Syftet med utredningen är att redovisa potentiella risker och analysera huruvida de utgör ett hot mot grundvattenresursen samt att ge förslag på riskreducerande åtgärder i bygg- respektive driftskede. Riskerna analyseras med avseende på både grundvattnets kvalitet och kvantitet.

1.3 OMFATTNING OCH AVGRÄNSNING
En inventering av riskkällor och identifiering av risker har utförts utifrån befintligt underlag som exempelvis öppna data och tidigare utredningar som har utförts inom och i anslutning till planområdet. Det har inte utförts några fältundersökningar. Inom utredningen har både interna riskkällor inom planområdet respektive externa riskkällor som kan påverka fastigheten hanterats. Med interna riskkällor avses risker under bygg- och driftskede, medan externa riskkällor innefattar exempelvis infrastruktur, tillståndspliktiga miljöfarliga verksamheter, drivmedelsstationer och potentiellt förorenade markområden.
2 METOD

2.1 METODIK FÖR RISKBEDÖMNING

Riskbedömningen har utförts i enlighet med metodiken i SS-ISO 31 000 (Swedish Standards Institute, 2018) för riskhantering, se Figur 3 för en beskrivning av riskhanteringsprocessen.

Inledningsvis genomförs en riskidentifiering där syftet är att upptäcka, förstå och beskriva risker.

Efterföljande steg i processen utgörs av en risikoidentifiering där syftet är att förstå riskens karaktär och egenskaper. I samband med risikoidentifieringen har frekvenser och konsekvenser för olika händelser bedömts, se Tabell 2 respektive Tabell 3.

Tabell 2 Kategorisering av sannolikheter utifrån skadehändelsernas frekvens (Geosigma AB, 2018).

<table>
<thead>
<tr>
<th>Frekvens</th>
<th>Sannolikhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1 gång per dag – 1 mån</td>
<td>5</td>
</tr>
<tr>
<td>1 gång per 1 mån – 1 år</td>
<td>4</td>
</tr>
<tr>
<td>1 gång per 1 år – 10 år</td>
<td>3</td>
</tr>
<tr>
<td>1 gång per 10 år – 100 år</td>
<td>2</td>
</tr>
<tr>
<td>1 gång per 100 år – 1000 år</td>
<td>1</td>
</tr>
</tbody>
</table>
Tabell 3 Indelning av konsekvenser utifrån negativ påverkan på MKN/gränsvärden enligt hänsynskraven (Geosigma AB, 2018).

<table>
<thead>
<tr>
<th>Påverkan</th>
<th>Konsekvens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokalt överskridande av MKN/gränsvärde, irreversibel</td>
<td>5</td>
</tr>
<tr>
<td>Lokalt kraftigt överskridande av MKN/gränsvärde, reversibel</td>
<td>4</td>
</tr>
<tr>
<td>Lokalt litet överskridande av MKN/gränsvärde, reversibel</td>
<td>3</td>
</tr>
<tr>
<td>Liten men mätbar haltökning</td>
<td>2</td>
</tr>
<tr>
<td>Ej mätbar haltökning</td>
<td>1</td>
</tr>
</tbody>
</table>

Sannolikheter och konsekvenser för olika risker har vägts samman och redovisas i form av en riskmatris, se Figur 4. Risker där produkten av sannolikhet och konsekvens överstiger 12 (röd zon) bör utredas vidare inom utredningen i syfte att utarbeta riskreducerande åtgärder. Där risker hamnar inom riskmatrisens gula zon bör rimliga riskreducerande åtgärder övervägas. Markanvändningen har i riskanalysen främst en inverkan på sannolikheten att en skadehändelse inträffar. Särskilda bedömningar har gjorts för de fall där en förändrad markanvändning bedömts kunna innebära en förändrad sannolikhet för skadehändelsens inträffande.

![Riskmatris för bedömning av risker.](image)

Efter riskanalysen följer en riskvärdering där resultaten från riskanalysen jämförs mot värderingskriterier enligt nedan:

- röd nivå innebär att riskreducerande åtgärder bör vidtas
- gul nivå innebär att rimliga riskreducerande åtgärder bör vidtas
- grön nivå innebär en acceptabel risknivå

Därefter är det möjligt att utarbeta förslag på riskreducerande åtgärder.
3 FÖRUTSÄTTNINGAR

3.1 GRUNDVATTENFÖREKOMSTEN I UPPSALA- OCH VATTHOLMAÅSARMEN

Uppsala- och Vattholmaåsarna utgör grundvattenförekomster i Uppsala tätort. Delar av åsarna går genom tätbysydda områden, som exempelvis det aktuella planområdet, se Figur 5.

![Figur 5. Planområdet (röd polygon) ligger i den västra delen av den grundvattenförekomst som utgör dricksvattentäkt (VISS, 2017).](image)

3.1.1 BESKRIVNING AV KÄNSLIGHET

De hydrogeologiska förutsättningarna avgör hur känsligt ett område är för att grundvattnets kvalitet ska påverkas negativt av en förorening. Känslighet är en geografiskt distribuerad egenskap och med känslighet avses hur känslig en specifik plats är för att en förorening på markytan eller en marknära förorening kan påverka grundvattnet i Uppsala- och Vattholmaåsarna så att det inte kan användas som resurs för dricksvattenförsörjning (Geosigma AB, 2018).
3.1.2 KÄNSLIGHETSKLASSER

I Tabell 4 redovisas en beskrivning av känslighetsklasserna. Det aktuella planområdet ligger i ett område med hög känslighet på grund av att det avvattnas mot områden med extrem känslighet.

Tabell 4. Beskrivning av känslighetsklasser (Geosigma AB, 2018).

<table>
<thead>
<tr>
<th>E - Extrem känslighet</th>
<th>▪ Isälvsmaterial i dagen (grönt) på jordartskartan + 50 meter osäkerhetsmarginal, baserat på SGU:s rekommendationer med avseende på generaliseringar och brister i noggrannhet för kartgränser.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H - Hög känslighet</td>
<td>▪ Lera med mäktighet mindre än 5 meter som överlagrar isälvsmaterial. ▪ Lera med mäktighet större än 5 meter som överlagrar isälvsmaterial och som avvattnas mot områden i klas extrem. ▪ Lera som överlagrar morän och som avvattnas mot områden i klas extrem. ▪ Morän och bergområde inom 1 000 meter från kontaktytan mellan morän och utbredning isälvsmaterial med hydraulisk kontakt med isälvsmaterial.</td>
</tr>
<tr>
<td>M - Måttlig känslighet</td>
<td>▪ Lera med mäktighet större än 5 meter som överlagrar isälvsmaterial och som avvattnas mot klass hög. ▪ Lera med mäktighet större än 5 meter som överlagrar morän och som avvattnas mot klass hög. ▪ Lera med mäktighet mindre än 5 meter som överlagrar morän som inte avvattnas mot områden i klas extrem. ▪ Morän och bergområde på ett avstånd större än 1 000 meter från kontaktytan mellan morän och utbredning isälvsmaterial med hydraulisk kontakt med isälvsmaterial. ▪ Morän och bergområde inom 1 000 meter från kontaktytan mellan morän och utbredning isälvsmaterial utan hydraulisk kontakt med isälvsmaterial.</td>
</tr>
<tr>
<td>L - Låg känslighet</td>
<td>▪ Lera med mäktighet större än 5 meter som överlagrar isälvsmaterial och som inte avvattnas mot områden i klass extrem eller hög. ▪ Lera med mäktighet större än 5 meter som överlagrar morän och som inte avvattnas mot områden i klass extrem eller hög. ▪ Morän- och bergområden på ett avstånd större än 1 000 meter från kontaktytan mellan morän och isälvsmaterial utan hydraulisk kontakt med isälvsmaterial.</td>
</tr>
</tbody>
</table>

3.2 BEFIINTLIGA MARKFÖRORENINGAR

I Figur 6 redovisas potentiellt förorenade områden i planområdets omgivning. Det finns inga kända markföroringar inom planområdet.

Närmast förorenade markområde ligger cirka 50 meter nordväst om planområdet där en textilindustri tidigare varit verksam. Enligt gällande MIFO rapport för textilindustrin har ingen marksanering utförts och de potentiella föroringarna har bedömts till Måttlig risk av Länsstyrelsen (klass 3).

Vid en fastighet cirka 170 meter norr om planområdet har det tidigare förekommit verkstadsindustri med halogenerade lösningsmedel vilket innebär att det är möjligt att klorerade lösningsmedel har använts.
4 RISKIDENTIFIERING

Identifieringen av risker sker utifrån tre kategorier: risker i samband med bygg- respektive driftskedet inom planområdet samt risker som är kopplade till händelser utanför planområdet, så kallade övriga risker. De identifierade riskerna i kapitel 4 analyseras sedan vidare i kapitel 5.

4.1 RISKER UNDER BYGGSKEDET

I Tabell 5 redovisas en sammanställning över potentiella risker i samband med byggskedet. Riskerna är kopplade till händelser som skulle kunna ske inom planområdet under byggskedet och som potentiellt skulle kunna innebära en påverkan på grundvattentäkten.

Tabell 5. Risker i byggskedet.

<table>
<thead>
<tr>
<th>Aktivitet</th>
<th>Underaktivitet</th>
<th>Möjliga risker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pålning</td>
<td>Potentiell transportväg för föroreningar att spridas ner till grundvatten</td>
<td>Okad spridning av föroreningar</td>
</tr>
<tr>
<td>Schaktarbete</td>
<td>Bortledning av grundvatten</td>
<td>• Okad spridning av föroreningar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sättningar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Minskad grundvattenbildning</td>
</tr>
<tr>
<td></td>
<td>Utsläpp av byggdaggvatten</td>
<td>Förreningsrisk</td>
</tr>
<tr>
<td></td>
<td>Möjlig transportväg för föroreningar</td>
<td>Förreningsrisk</td>
</tr>
<tr>
<td>Rivning</td>
<td>Spridning av föroreningar</td>
<td>Förreningsrisk</td>
</tr>
<tr>
<td>Uppställning av arbetsfordon</td>
<td>Läckage eller spill av hydraulolja, bensin eller diesel från arbetsfordon</td>
<td>Förreningsrisk</td>
</tr>
<tr>
<td>Brandbekämpning</td>
<td>Släckvatten som infiltrerar marken</td>
<td>Förreningsrisk</td>
</tr>
</tbody>
</table>
4.2 RISKER UNDER DRIFTSKEDET

I Tabell 6 redovisas en sammanställning över potentiella risker i samband med driftskedet. Riskerna är kopplade till händelser som skulle kunna uppstå efter byggfasen, när den nya byggnaden är färdigställd och i bruk.

Tabell 6. Risker driftskedet.

<table>
<thead>
<tr>
<th>Aktivitet</th>
<th>Underaktivitet</th>
<th>Möjliga risker</th>
</tr>
</thead>
</table>
| Förändrad markanvändning | Dagvattenpåverkan | • Minskad grundvattenbildning pga. ändrade förutsättningar
| | | • Ökad diffus föroreningsspridning |
| Brandbekämpning | Släckvatten som infiltrerar marken | Föröreningsrisk |
| Översvämning | Risk för spridning av föroreningar | Föröreningsrisk |

4.3 ÖVRIGA RISKKÄLLOR

I föregående avsnitten, 4.1 respektive 4.2, har riskkällor inom fastigheten identifierats, medan detta avsnitt hanterar riskkällor utanför fastigheten som eventuellt kan medföra en påverkan på området.

I Tabell 7 redovisas en sammanställning avseende övriga riskkällor och vilka möjliga risker dessa kan medföra.

Tabell 7 Inledande riskinventering avseende övriga riskkällor.

<table>
<thead>
<tr>
<th>Aktivitet</th>
<th>Underaktivitet</th>
<th>Möjliga risker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vägar</td>
<td>• Trafikolyckor</td>
<td>Föröreningsrisk</td>
</tr>
<tr>
<td></td>
<td>• Olyckor som innefattar transporter av farligt gods</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Järnväg</td>
<td>• Olyckor som innefattar transporter av farligt gods</td>
<td>Föröreningsrisk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tillståndsplichtiga miljöfarliga verksamheter</td>
<td>• Olyckor som innefattar miljö- och/eller hälsofarliga ämnen</td>
<td>Föröreningsrisk</td>
</tr>
<tr>
<td></td>
<td>• Brand</td>
<td></td>
</tr>
<tr>
<td>Drivmedelsstationer</td>
<td>• Utsläpp av drivmedel</td>
<td>Föröreningsrisk</td>
</tr>
<tr>
<td></td>
<td>• Brand</td>
<td></td>
</tr>
<tr>
<td>Potentiellt förorenade markområden</td>
<td>Spridning av föroreningar</td>
<td>Föröreningsrisk</td>
</tr>
<tr>
<td>Översvämning</td>
<td>Spridning av föroreningar</td>
<td>Föröreningsrisk</td>
</tr>
</tbody>
</table>
5 RISKANALYS

5.1 RISKER UNDER BYGGSKEDET

5.1.1 PÅLNING

Potentiell transportväg för föroreningar

Eftersom det inte finns några transportleder för farligt gods i anslutning till planområdet har trafikolyckor och olyckor kopplade till arbetsfordon som arbetar inom planområdet bedömts som de mest troliga föroreningssändarna när det gäller punktutsläpp. Diesel, bensin eller hydraulolja bedöms som mest troliga att spridas i samband med en sådan olycka.

Sannolikheten för att det sker en trafikolycka inom Uppsala- och Vattholmaässarnas avrinningsområde som medför en påverkan på grundvattenförekomsten är 1 gång per 1 år - 10 år, vilket motsvarar sannolikhet 3 (Geosigma, 2018). Sannolikheten för att det sker en olycka samtidigt som pålar drivs ner inom planområdet förväntas vara betydligt mindre än så, motsvarande 2. Sannolikheten för att det sker ett punktutsläpp i samband med olyckor och spill kopplade till arbetsfordon bedöms som något högre, till en sannolikhet motsvarande 3.

5.1.2 SCHAKTARBETE

Bortledning av grundvatten

Lerlager på omkring 20 meter har påträffats inom planområdet enligt den geotekniska utredningen vilket visar på att lerlaget är tillräckligt mäktigt för att det inte kommer att krävas bortledning av grundvatten i samband med schakt. Ett högt grundvattendruck tillsammans med minskad lermäktighet innebör att risken för bottenupptryckning vid schaktning inte kan uteslutas. Den översiktliga geotekniska utredningen för planområdet visar att grundvattens trycknivå ligger cirka 5 meter under markytan vilket motsvarar cirka +6,26 meter. Enligt gällande planbeskrivning daterad 2017-04-05 kommer källarens golvnivå för den planerade byggnaden har en nivå på cirka +8,5 meter. Schaktbotten uppskattas hamna cirka 1 meter djupare på cirka +7,5 meter. Detta tyder på att grundläggningen kan komma att hamna över grundvattnets trycknivå och eventuellt krävs det inte någon bortledning av grundvatten i samband med schakt inom planområdet (Bjerking, 2017). Då mätningen av grundvattennivån har utförts i ett grundvattrörlor i Tegnérisviken, cirka 150 meter sydväst om planområdet, ger mätningen endast en fingervisning över grundvattennivån inom planområdet. Grundvattennivån varierar efter säsong och de platsspecifika geologiska förutsättningarna vilket innebör att grundvattennivån inom planområdet kan vara både högre eller lägre än den uppmätta. Ösäkerheten kring grundvattentyps trycknivå inom fastigheten innebör att det kan krävas bortledning av grundvatten och därmed har riskerna bedömts utifrån det.
Bortledning av grundvatten i samband med schaktarbete innebär en ökad risk för att mobilisera förorenings som förekommer utanför planområdet.

Sättningar bedöms inte innebära någon risk ur dricksvattensynpunkt för Uppsala- och Vattholmaåsarna och tas därmed inte upp vidare i utredningen.

Den minskade grundvattenbildningen som blir till följd av en eventuell bortledning av grundvatten vid schaktarbete bedöms inte innebär någon risk för Uppsala- och Vattholmaåsarna på grund av den relativt korta period och det begränsade området som schaktarbete utförs inom.

Figur 7. Sammanställning över potentiellt förorenade markområden i anslutning till planområdet (Länsstyrelserna, 2018).
Utsläpp av byggdagvatten

I det fall byggdagvattnet leds vidare till Fyrisån finns det en risk att detta innebär en påverkan på Fyrisån och Vattholmaåsarna. De mäktiga lerlagren innebär längre infiltrationskapacitet. Risken för infiltretation förekommer snarare i samband med att schaktet står öppet. Om byggdagvattnet tillåts infiltrera marken bedöms riskerna motsvara dem för infiltration av dagvatten. Föreningssnedlingen för byggdagvattnet kommer dock att bero på vad som tidigare funnits i marken och över vilka ytor som eventuellt nederbörd har flödat över innan det når schakten.

Konsekvenserna för en sådan händelse bedöms som klass 1 (motsvarande påverkan Ej mätbar haltökning). En rimlig sannolikhet för att det ska ske infiltration av förorenat byggdagvattnet bedöms som 4 vilket motsvarar en risk produkt på 4.

Möjlig transportväg för föroreningar

Schaktarbetet innebär att man tunnar ut det tätande lerlagret lokal vilket skulle kunna innebära en ökad risk för föroreningstransport ner till grundvattnet om det samtidigt skulle ske ett punktutsläpp i samband med en olycka inom eller i anslutning till planområdet. Samma risk och motivering gäller därmed som för pålning, se kapitel 5.1.1.

5.1.3 RIVNING

Rivningsavfall kan innehålla miljöfarliga ämnen som vid rivning eller upplag av rivningsavfallet kan bli kvar i marken. Om vidare transportvägar bildas riskerar dessa ämnen sedan att spridas ner till grundvattnet. Exempel på föroreningar som kan förekomma i rivningsavfall är PCB, asbest och kvicksilver (Sveriges byggindustrier, 2017).

Dessa ämnen har bedömts kunna leda till konsekvens 3 och tillsammans med en sannolikhet 3 innebär det en risk produkt på 9.

5.1.4 UPPSTÄLLNING AV ARBETSFORDON

En av riskerna som kan uppstå i samband med byggskedet är kopplade till de arbetsfordon som används i samband med rivning av den befintliga byggnaden och schaktarbeten. Vid spill eller läckage av hydraulolja eller drivmedel från arbetsfordonen finns det en risk för att det sprider sig ner till grundvattnet.

Risken att det ska ske spill bedöms till sannolikhet 3 och konsekvens har bedömts till 3 vilket innebär en risk produkt på 9.

5.1.5 BRANDBEKÄMPNING

Enligt MSBs statistiska databas, IDA, gör räddningstjänsten i genomsnitt cirka 100 insatser per år kopplade till brand i bostäder i Uppsala län (Myndigheten för samhällsskydd och beredskap, 2018c). Sannolikheten för brander där släckvatten kontaminerades och/eller brandskum behöver användas uppskattas därför till 3. En bilbrand som kräver släckning med brandskum kan medföra allvarliga följder vid spridning till grundvattnet och konsekvensen har därför bedömts till 4. Detta leder till en konsekvens 4 och en risk produkt på 12.
5.1.6 SAMMANSTÄLLNING AV RISKER UNDER BYGGSKEDET

I Tabell 8 redovisas en sammanställning över potentiella risker som skulle kunna uppstå i samband med byggskedet.

Tabell 8. Sammanställning av risker i byggskedet.

<table>
<thead>
<tr>
<th>Aktivitet</th>
<th>Underaktivitet</th>
<th>Sannolikhet</th>
<th>Konsekvens</th>
<th>Riskprodukt</th>
<th>Åtgärdsförslag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pålning</td>
<td>Spridning av potentiella befintliga föroreningar</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>En markteknisk miljöteknisk markundersökning bör utföras för att undersöka föroreningssituationen inom planområdet. Se förklaring i avsnitt 6.</td>
</tr>
<tr>
<td></td>
<td>Möjlig transportväg för föroreningar kopplat till olyckor</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>Rutiner för hantering av olyckor eller spill samt utformning av uppställningsplats bör utarbetas. Se förklaring i avsnitt 6.</td>
</tr>
<tr>
<td></td>
<td>Möjlig transportväg för föroreningar kopplat till spill av arbetsfordon</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Schaktarbete</td>
<td>Bortledning av grundvatten som leder till spridning av klorerade lösningsmedel</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>En platsspecifik utredning bör göras av de geotekniska förhållandena. Om denna utredning visar att grundvattennivån är ovan schaktbotten bör även en hydrogeologisk undersökning göras inom planområdet. Se förklaring i avsnitt 6.</td>
</tr>
<tr>
<td></td>
<td>Bortledning av grundvatten som leder till spridning av föroreningar vid en textilindustri</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utsläpp av byggdagvatten</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Möjlig transportväg för föroreningar kopplat till olyckor</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>Rutiner för hantering av olyckor eller spill samt utformning av uppställningsplats bör utarbetas. Se förklaring i avsnitt 6.</td>
</tr>
</tbody>
</table>
5.2 RISKER UNDER DRIFTSKEDET

5.2.1 FORÄNDRAD MARKANVÄNDNING

Infiltration av förorenat dagvatten kan innebära en diffus föroreningsspridning till grundvattnet beroende på dagvattenhanteringen i området. En diffus föroreningsspridning innebär generellt att det sker ett mindre utsläpp än ett punktutsläpp men eftersom det diffusa utsläppet sker under en längre tid kan den ackumulerade mängden föroreningar fortfarande innebär betydande påverkan på grundvattnet.

5.2.2 BRANDBEKÄMPNING

Under driftskedet kan det även bli aktuellt med brandbekämpning och sannolikheterna respektive konsekvenserna motsvarar de som har redovisats under kapitlet för byggskedet, se kapitel 5.1.5.

5.2.3 SAMMANSTÄLLNING AV RISKER UNDER DRIFTSKEDET

I Tabell 9 redovisas en sammanställning över potentiella risken i samband med driftskedet.
Tabell 9 Sammanställning av risker i driftskedet.

<table>
<thead>
<tr>
<th>Aktivitet</th>
<th>Sannolikhet</th>
<th>Konsekvens</th>
<th>Riskprodukt</th>
<th>Åtgärdsförslag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hårdgörande av ytor</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Har utretts i en dagvattenutredning</td>
</tr>
<tr>
<td>Brandbekämpning</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>Hanteringen av släckvatten bör beaktas i projekteringsskedet. Se förklaring i avsnitt 6.</td>
</tr>
<tr>
<td>Översvämning</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

5.3 ÖVRIGA RISKKÄLLOR

I detta avsnitt kommer påverkan från övriga riskkällor på planområdet att analyseras. Avstånden mellan planområdet och övriga riskkällor i dess anslutning är relativt långa, merparten uppgår till cirka en kilometer. I Figur 8 redovisas tillståndspåtliga miljöfarliga verksamheter, drivmedelsstationer, vägar samt transportleder för farligt gods.

Figur 8 Sammanställning över tillståndspåtliga miljöfarliga verksamheter, drivmedelsstationer och transportleder för farligt gods i anslutning till planområdet (Länsstyrrelserna, 2018).

5.3.1 VÄGAR

Vägar utgör riskkällor som medför både ett kontinuerligt utsläpp av exempelvis tungmetaller och partiklar till följd av trafiken och konsekvenser från en eventuell olyckshändelse med fordon som transporterar farligt gods eller en brand. Avståndet till närmaste transportled för farligt gods, väg 55, är cirka en kilometer och detta medför att antalet olycksscenarion som kan medföra en påverkan på planområdet är begränsat.
En trafikolycka som inträffar på Ringgatan kan exempelvis medföra en brand eller ett utsläpp av drivmedel som behöver hanteras. Släckvatten från en bilbrand utmed gatan kan medföra en påverkan på planområdet, men då byggnaden innefattar ett garage kommer sannolikheten för att detta inträffar reduceras till viss del.

5.3.2 JÄRNVÄG

Olyckshändelserna som kan inträffa inom järnvägen är liknande de för transporter av farligt gods på väg, skillnaderna är dock att sannolikheten för en olycka är betydligt lägre inom järnvägen. Ifall en olycka skulle inträffa är det dock rimligt att förvänta sig allvarligare konsekvenser då ett godståg generellt medför flera vagnar med farligt gods och godsmängderna för respektive godsvagn motsvarar ungefär en lastbil med släp. Ett eventuellt utsläpp förväntas därför bli större vid en olycka på järnväg jämfört med en olycka på väg.

Avståndet till järnvägen är cirka 350 meter, vilket medför att endast ett begränsat antal olycksscenario kan medföra en påverkan på planområdet.

5.3.3 TILLSTÄNDSPLIKTIGA MILJÖFARLIGA VERksamheter

5.3.4 DRIVMEDELSSTATIONER

Det finns inga drivmedelsstationer lokaliseraade i anslutning till planområdet, se Figur 8, vilket medför att transporter av drivmedel inte utgör någon riskkälla. Avståndet till den närmast liggande drivmedelsstationen är cirka en kilometer.

5.3.5 POTENTIELLT FÖRORENADE MARKOMRÅDEN

I Figur 6 redovisas en sammanställning över potentiellt förorenade markområden i anslutning till planområdet. I avsnitt 5.1.2 hanterades de potentiellt förorenade markområdena mer ingående.

5.3.6 ÖVERSVÄMNING

Planområdet ligger utanför det området som kan komma att översvämmas av Fyrisån vid ett 100-årsregn, 200-årsregn och vid beräknat högsta flöde (BHF), se Figur 9. Risker för händelser kopplade till en potentiell översvämning av Fyrisån bedöms som låg.
Figur 9. Resultat från modellering av översvämningar för 100-årsregn, 200-årsregn och BHF (beräknat högsta flöde) för Fyrisån (Myndigheten för samhällsskydd och beredskap, 2018a).

5.3.7 SAMMANSTÄLLNING AV RISKER TILL FÖLJD AV ÖVRIGA RISKKÄLLOR

I Tabell 10 redovisas en sammanställning av risker kopplade till övriga riskkällor.

Tabell 10 Sammanställning över riskanalysen avseende övriga riskkällor.

<table>
<thead>
<tr>
<th>Aktivitet</th>
<th>Sannolikhet</th>
<th>Konsekvens</th>
<th>Riskprodukt</th>
<th>Åtgärdsförslag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vägar</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Järnväg</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Tillståndsplickiga miljöfarliga verksamheter</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Drivmedelsstationer</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Potentiellt förorenade markområden</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Översvämning</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
6 RISKREDUCERANDE ÅTGÄRDER

6.1 RISKER UNDER BYGGSKEDET

6.1.1 PÅLNING

Pålning bör endast utföras när det är säkerställt att marken inom planområdet är fri från föroreningar. Detta för att förhindra risken för transporter av föroreningarna till grundvattnet. Om den geotekniska undersökningen visar att det finns en risk för uppträngning av grundvatten längs med pålarna bör tätning utföras runt pålarna för att förhindra detta.

Entreprenörer ska bli informerade i de riskerna som förekommer inom planområdet och rutiner bör upprätta som minimerar risken för att det sker spill eller olyckor vid hantering av miljöfarliga ämnen. Dispens för pålning närmare än 1 meter från grundvattnets trycknivå krävs då planområdet ligger inom vattenskyddsområde.

6.1.2 SCHAHTARBETEN

Innan byggstart bör marken inom planområdet undersökas (miljöteknisk markundersökning) med avseende på markföroreningar. Vid behov genomförs efterbehandlingsåtgärder av förorenad mark. Inför markarbeten behöver entreprenören informeras om att avbryta arbetena och tillkalla miljökontrollant vid misstanke om förorening (lukt, färg eller avvikande material). Detta gäller även om tidigare utförda provtagningar inte påvisat förekomst av föroreningar.

Om den geotekniska undersökningen visar att grundvattnets trycknivå ligger över schaktbottenivå bör det utföras en hydrogeologisk utredning innan b grundvatten leds bort. Utredningen bör syfta till att bedöma påverkansområdet och spridningsrisken från föroreningar. Utredningen bör även säkerställa att det inte finns risk för bottenuppvaktningsutredning.

Entreprenörer ska bli informerade i de riskerna som förekommer inom planområdet och rutiner bör upprättas som minimerar risken för att det sker spill eller olyckor vid hantering av miljöfarliga ämnen. Dispens för schakt närmare än 1 meter från grundvattnets trycknivå krävs då planområdet ligger inom vattenskyddsområde.

6.1.3 UPPSTÄLLNING AV ARBETSFORDON

Entreprenörer ska bli informerade i de riskerna som förekommer inom planområdet och rutiner bör upprättas som reducerar risken för att det sker spill eller olyckor vid hantering av miljöfarliga ämnen. Uppställning av arbetsfordon ska ske på tät platta eller liknande som förhindrar spill av hydraulolja eller diesel att infiltrera marken och nå grundvattnet.

6.1.4 RIVNING

I samband med rivning finns en risk för att föroreningar från rivningsmaterialet kan frigöras och spridas till grundvattnet vilket behöver beaktas.

6.2 RISKER UNDER DRIFTSKEDET

6.2.1 BRANDBEKÄMPNING

Parkeringsytor i form av garage minskar risken för att släckningsarbeten i samband med bilbränder medför en påverkan på grundvattnet. Höjdsättning av parkeringsytor ska annars vara sådan att avrinningen sker till dagvattenbrunnar eller liknande för att förhindra infiltration till grundvattnet. Släckningsarbeten bör annars utföras, så långt som möjligt, med vatten istället för brandskum. Släckvattnet ska även, i största möjliga mån, samlas upp och ytavrinning mot icke härdfjorda ytor bör förhindras.

Generell information till räddningstjänsten angående hur brandbekämpning ska utföras inom vattenskyddsområdet bör upprättas om en sådan inte redan finns.

Uppdrag: 290603, Fördjupad riskanalys för Luthagen 27:12
Beställare: Genova Bostad Projektutveckling AB
2019-01-30
Slutrapport
24(28)
6.3 ÖVRIGA RISKKÄLLOR
Planområdets lokalisering medför att det inte finns något behov av riskreducerande åtgärder för övriga riskkällor till följd av avståndet mellan planområdet och identifierade riskkällor.
7 SLUTSATS

I samband med den fördjupade riskanalysen har risker under bygg- respektive driftskedet analyserats. I Tabell 11 redovisas vilka risker som bör hanteras vidare tillsammans med förslag på åtgärder i syfte att reducera påverkan från dessa.

Överlag är de identifierade riskerna relaterade till genomförandet av planförslaget begränsade och åtgärderna för att hantera dessa är förhållandevis enkla att genomföra. Utredningen visar att vid planering och implementering av riskreducerande åtgärder (Tabell 11) reduceras risksituationen med avseende på Uppsala- och Vattholmaåsarna till acceptabla nivåer för planområdet.

Tabell 11. Sammanställning över risker som bör hanteras vidare och förslag på åtgärder.

<table>
<thead>
<tr>
<th>Aktivitet</th>
<th>Underaktivitet</th>
<th>Sannolikhet</th>
<th>Konsekvens</th>
<th>Riskprodukt</th>
<th>Åtgärdssförslag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pålning</td>
<td>Spridning av potentiella befintliga föroreningar</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>En miljöteknisk markundersökning bör utföras för att undersöka föroreningssituationen inom planområdet. Se förklaring i avsnitt 6.</td>
</tr>
<tr>
<td></td>
<td>Möjlig transportväg för föroreningar kopplade till olyckor</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>Rutiner för hantering av olyckor eller spill samt utformning av uppställningsplats bör utarbetas. Se förklaring i avsnitt 6.</td>
</tr>
<tr>
<td></td>
<td>Möjlig transportväg för föroreningar kopplade till spill av arbetsfordon</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Schaktarbete</td>
<td>Bortledning av grundvatten som leder till spridning av klorerade lösningsmedel</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>En platsspecifik utredning bör göras av de geotekniska förhållandena. Om denna utredning visar att grundvattennivån är ovan schaktbotten bör även en hydrogeologisk undersökning göras inom planområdet. Se förklaring i avsnitt 6.</td>
</tr>
<tr>
<td></td>
<td>Bortledning av grundvatten som leder till spridning av föroreningar vid en textilindustri</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Möjlig transportväg för föroreningar kopplade till olyckor</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>Rutiner för hantering av olyckor eller spill samt utformning av uppställningsplats bör utarbetas. Se förklaring i avsnitt 6.</td>
</tr>
<tr>
<td></td>
<td>Möjlig transportväg för föroreningar kopplade till spill av arbetsfordon</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk för spridning av föroreningar</td>
<td></td>
<td></td>
<td>Risken för föroreningar i rivningsmaterialet bör beaktas. Se förklaring i avsnitt 6.</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Rivning</td>
<td></td>
<td>3</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Uppställning av arbetsfordon</td>
<td>Risk för spridning av föroreningar</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rutiner för hantering av olyckor eller spill samt utformning av uppställningsplats bör utarbetas. Se förklaring i avsnitt 6.</td>
<td></td>
</tr>
<tr>
<td>Brandbekämpning</td>
<td></td>
<td>3</td>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hanteringen av släckvatten bör beaktas i projekteringskedet. Se förklaring i avsnitt 6.</td>
<td></td>
</tr>
</tbody>
</table>
8 REFERENSER

